The Bernstein Operational Matrix of Integration

نویسندگان

  • Amit K. Singh
  • Vineet K. Singh
  • Om P. Singh
  • A. K. Singh
  • V. K. Singh
  • O. P. Singh
چکیده

An accurate method is proposed to solve problems such as identification, analysis and optimal control using the Bernstein orthonormal polynomials operational matrix of integration. The Bernstein polynomials are first orthogonalized, normalized and then their operational matrix of integration is obtained. An example is given to illustrate the proposed method. Mathematics Subject Classification: 41A10, 49J15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

Electro-spunorganic nanofibers elaboration process investigations using BPs operational matrices

In this paper operational matrix of Bernstein Polynomials (BPs) is used to solve Bratu equation. This nonlinear equation appears in the particular elecotrospun nanofibers fabrication process framework. Elecotrospun organic nanofibers have been used for a large variety of filtration applications such as in non-woven and filtration industries. By using operational matrix of fractional integration...

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

The Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials

‎In this paper‎, ‎we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays‎. ‎Constant or pantograph delays may appear in state-control or both‎. ‎We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then‎, ‎these are utilized to reduce the solution of optimal control with constant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009